networkqit.algorithms.optimize.MLEOptimizer¶
-
class
MLEOptimizer
(G: autograd.numpy.numpy_wrapper.array, x0: autograd.numpy.numpy_wrapper.array, model: networkqit.graphtheory.models.GraphModel.GraphModel, **kwargs)[source]¶ This class, inheriting from the model optimizer class solves the problem of maximum likelihood parameters estimation in the classical settings.
-
__init__
(G: autograd.numpy.numpy_wrapper.array, x0: autograd.numpy.numpy_wrapper.array, model: networkqit.graphtheory.models.GraphModel.GraphModel, **kwargs)[source]¶ Initialize the optimizer with the observed graph, an initial guess and the model to optimize.
- Args:
G (numpy.array) :is the empirical network to study. A N x N adjacency matrix as numpy.array. x0 (numpy.array): is the k-element array of initial parameters estimates. Typically set as random. model (nq.GraphModel): the graph model to optimize the likelihood of.
Methods
__init__
(G, x0, model, **kwargs)Initialize the optimizer with the observed graph, an initial guess and the model to optimize.
run
(method[, ftol, gtol, xtol, maxiter])Maximimize the likelihood of the model given the observed network G.
-